

Global Optimization Algorithm through High-Resolution Sampling

Daniel Cortild, N. Oudjane, C. Delplancke, J. Peypouquet

PGMO Days, Paris, November 19th, 2024

Problem Statement

We consider minimization problems of the following form: Given a (possibly nonconvex) smooth potential $U \colon \mathbb{R}^d \to \mathbb{R}$, find

$$x^* \in \operatorname{argmin}_{x \in \mathbb{R}^d} U(x).$$

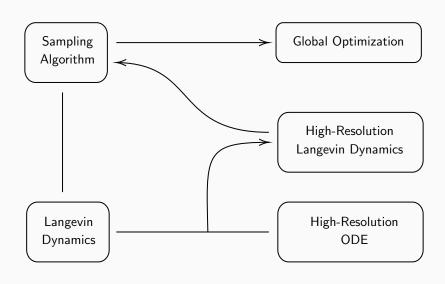
This framework does not include constrained problems!

Approach:

- Build a probability distribution such that its samples are close to the global minimizers.
- Build an algorithm to sample, at least approximately, from that distribution.

Assumptions:

- U is twice differentiable and that ∇U is Lipschitz continuous,
- There exists an $a_0 > 0$ such that $\int_{\mathbb{R}^d} \exp(-a_0 U(x)) dx < +\infty$,
- ullet The measure $\mu^a \propto \exp(-aU)$ satisfies a log-Sobolev inequality,
- U has a finite number of global minimizers, with minimum value U^* .



Some Notions

We will be working on the space of probability measures, which we denote $\mathcal{P}(\mathbb{R}^d)$.

Kullback-Leibler Divergence: For any $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$, we define

$$\mathsf{KL}(
u \| \mu) = \mathbb{E}_{x \sim
u} \left[\log \frac{d
u}{d\mu}(x) \right].$$

Relative Fischer Information: For any $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$, we define

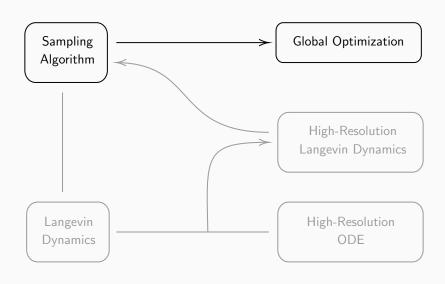
$$\operatorname{Fi}(oldsymbol{
u} \| oldsymbol{\mu}) = \mathbb{E}_{\mathbf{x} \sim oldsymbol{
u}} \left[\left\| \nabla \log \frac{d oldsymbol{
u}}{d oldsymbol{\mu}}(\mathbf{x}) \right\|^2 \right].$$

Log-Sobolev Inequality We say μ satisfies a log-Sobolev inequality if, for all $\nu \in \mathcal{P}(\mathbb{R}^d)$,

$$\mathsf{KL}(oldsymbol{
u} \| oldsymbol{\mu}) \leq rac{1}{2
ho} \mathsf{Fi}(oldsymbol{
u} \| oldsymbol{\mu}).$$

This may be compared to a Polyak-Lojasiewicz inequality in \mathbb{R}^d .

Л



Optimization through Sampling?

Define μ^* to be an appropriate mixture of Dirac measures concentrated on the global minimizers of U.

Theorem (Athreya and Hwang, 2010)

Let $\mu^a \propto \exp(-aU)$. Then it holds that $\mu^a o \mu^*$.

Convergence in the above is in the weak sense. Strong convergence was later established in Hasenpflug, Rudolf, and Sprungk, 2024.

Intuitively:

- Sampling from μ^* gives us a global minimizer of U. However, we cannot sample from μ^* .
- By picking a>0 sufficiently large, μ^a is 'close' to μ^* . However, we also cannot sample from μ^a directly.
- We can however design an algorithm that samples from some $\tilde{\mu}$, that is 'close' to μ^a .
- Running this multiple times will prevent outliers.

Global Optimization Algorithm

Algorithm 1 Global Optimization Algorithm

Require: Oracle algorithm and suitable parameters.

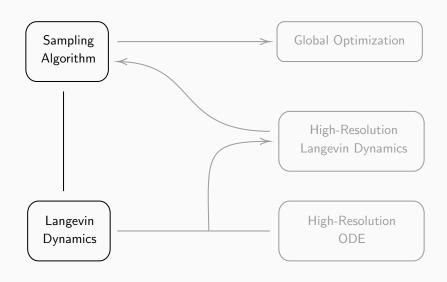
- 1: Generate N random i.i.d. samples $\tilde{X}^{(i)}$ according to oracle algorithm where $i=1,\ldots,N$.
- 2: Define $\tilde{X} = \tilde{X}^{(I)}$ where $I = \operatorname{argmin}_{i=1...,N} U(\tilde{X}^{(i)})$.

Theorem (Convergence of Global Optimization Algorithm)

Fix $\varepsilon>0$. Suppose we can sample from a distribution $\tilde{\mu}$ satisfying that $\mathrm{KL}(\tilde{\mu}\|\mu^a)$ is small.

Then we can guarantee, for $\tilde{X} \sim \tilde{\mu}$, that $\mathbb{P}(U(\tilde{X}) - U^* \leq \varepsilon)$ is high.

Question: How do we ensure that $\mathsf{KL}(\tilde{\mu}\|\mu^a)$ is small?



Sampling through Continuous Dynamics

Consider the stochastic differential equation (SDE), known as the **Langevin Dynamics**:

$$dX_t = -\gamma \nabla U(X_t)dt + \sqrt{2\gamma/a}dB_t,$$

where (B_t) is a standard *d*-dimensional Brownian motion. It is known that

- (X_t) has a unique (strong) solution,
- if we denote by $\mu_t = \mathcal{L}(X_t)$, one can show that μ_t converges linearly to $\mu^a \propto \exp(-aU)$ in KL divergence.

Conclusion: The Langevin dynamics is a good candidate to design a sampling algorithm!

Approximate Sampling

Langevin Dynamics:

$$dX_t = -\gamma \nabla U(X_t) dt + \sqrt{2\gamma/a} dB_t.$$

Issues:

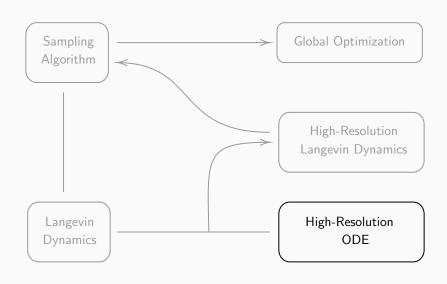
- Even though $\mu_t \to \mu^a$, we cannot simulate the process for $t=\infty$.
- ullet In fact, we cannot simulate μ_t at all!

Solution: Discretize the SDE. For instance, the Euler-Maruyama discretization reads

$$X_{(k+1)h} - X_{kh} = -\gamma h \nabla U(X_{kh}) + \sqrt{2\gamma h/a} \xi_k,$$

where $\xi_k \sim \mathcal{N}(0,1)$ are independent.

This process can be simulated by simulating Gaussians. One can prove convergence to μ^a in KL as $h \to 0$, although without an explicit rate, see Vempala and Wibisono, 2019.



Recent Deterministic Trends

Recent trends analyse continuous dynamics to gain insights into the discretized algorithms. For instance, Gradient Descent is a discretization of the Gradient Flow:

$$\dot{x}(t) = -\gamma \nabla f(x(t)) \quad \rightarrow \quad x_{k+1} = x_k - \gamma h \nabla f(x_k).$$

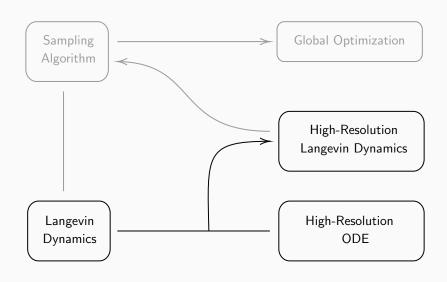
To capture acceleration behaviours, it has been proposed (Alvarez et al., 2002) to study the **High-Resolution ODE**:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \beta \nabla^2 U(x(t)) \dot{x}(t) + \gamma \nabla U(x(t)) = 0,$$

where $\alpha, \beta, \gamma > 0$. Equivalently, under a change of variables,

$$\begin{cases} \dot{x}(t) &= -\beta \nabla U(x(t)) + y(t) \\ \dot{y}(t) &= -\gamma \nabla U(x(t)) - \alpha y(t). \end{cases}$$

Discretizations have given rise to accelerated algorithms, see for instance Attouch et al., 2022.



High-Resolution Langevin Dynamics

One can view the Langevin Dynamics as a stochastic variant of the Gradient Flow:

$$\dot{x}(t) = -\gamma \nabla \mathit{U}(x(t)) \quad \leftrightarrow \quad dX_t = -\gamma \nabla \mathit{U}(X_t) dt + \sqrt{2\gamma/\mathsf{a}} dB_t.$$

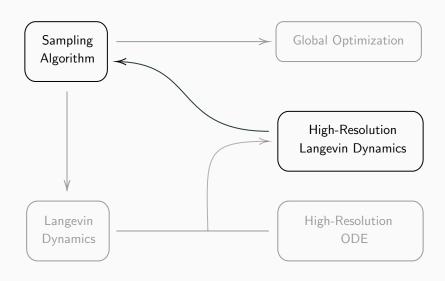
Recall the High-Resolution ODE in first-order form:

$$\begin{cases} \dot{x}(t) &= -\beta \nabla U(x(t)) + y(t) \\ \dot{y}(t) &= -\gamma \nabla U(x(t)) - \alpha y(t). \end{cases}$$

We consider a stochastic variant of it, namely

$$\begin{cases} dX_t = (-\beta \nabla U(X_t) + Y_t)dt + \sqrt{2\sigma_x^2} dB_t^x \\ dY_t = (-\gamma \nabla U(X_t) - \alpha Y_t)dt + \sqrt{2\sigma_y^2} dB_t^y. \end{cases}$$

We call these dynamics the **High-Resolution Langevin Dynamics**.



High-Resolution Langevin Dynamics

We propose and study the **High-Resolution Langevin Dynamics**:

$$\begin{cases} dX_t = (-\beta \nabla U(X_t) + Y_t)dt + \sqrt{2\sigma_x^2} dB_t^x \\ dY_t = (-\gamma \nabla U(X_t) - \alpha Y_t)dt + \sqrt{2\sigma_y^2} dB_t^y, \end{cases}$$
(1)

Theorem (Convergence of High-Resolution Langevin)

Assume suitable parameter relations, and denote $\mu_t = \mathcal{L}(X_t)$.

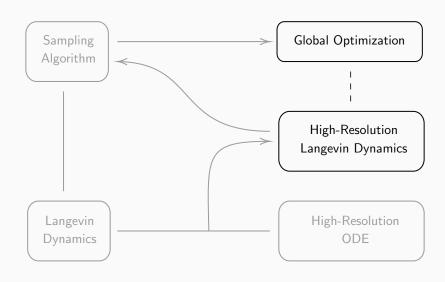
- 1. Under weak assumptions, (1) admits a weak solution (X_t, Y_t) such that $\mu^a \propto \exp(-aU)$ is the invariant law of (X_t) .
- 2. $\mathsf{KL}(\mu_t \| \mu^a) \to 0$ at an exponential rate.
- 3. For a sufficiently small step size h>0 and large number of iterations K, the discretization of System (1), denoted by $(\tilde{X}_t, \tilde{Y}_t)$, satisfies $\mathrm{KL}(\tilde{\mu}_{Kh} \| \mu^a) \leq \varepsilon$, for $\tilde{\mu}_t = \mathcal{L}(\tilde{X}_t)$. This discretized process may be simulated.

High-Resolution Langevin Algorithm

- 1. Simulate $(ilde{X}_0, ilde{Y}_0) \sim ilde{oldsymbol{\mu}}_0$
- 2. Iteratively generate $(\tilde{X}_{(k+1)h}, \tilde{Y}_{(k+1)h}) \sim \mathcal{N}(m, \Sigma)$ where

$$\begin{split} m_X &= \tilde{X}_{kh} - \beta h \nabla U(\tilde{X}_{kh}) + \frac{1 - e^{-\alpha h}}{\alpha} \tilde{Y}_{kh} - \frac{\gamma}{\alpha} \left(h - \frac{1 - e^{-\alpha h}}{\alpha} \right) \nabla U(\tilde{X}_{kh}) \\ m_Y &= e^{-\alpha h} \tilde{Y}_{kh} - \frac{\gamma}{\alpha} (1 - e^{-\alpha h}) \nabla U(\tilde{X}_{kh}) \\ \Sigma_{XX} &= \frac{\sigma_y^2}{\alpha^3} \left[2\alpha h - e^{-2\alpha h} + 4e^{-\alpha h} - 3 \right] \cdot I_d + 2\sigma_x^2 h \cdot I_d \\ \Sigma_{YY} &= \frac{\sigma_y^2 (1 - e^{-2\alpha h})}{\alpha} \cdot I_d, \quad \Sigma_{XY} &= \Sigma_{YX} = \frac{\sigma_y^2 (1 - e^{-\alpha h})^2}{\alpha^2} \cdot I_d. \end{split}$$

3. Return $(\tilde{X}_{Kh}, \tilde{Y}_{Kh})$.



Global Optimization through High-Resolution Sampling

Algorithm 2 Global Optimization through High-Resolution Sampling

Require: Suitable parameters and an initial distribution $ilde{\mu}_0$.

Ensure: Produce \tilde{X} satisfying $\mathbb{P}(U(\tilde{X}) - U^* \leq \varepsilon) \geq 1 - \delta$.

- 1: **for** i = 1, ..., N **do**
- 2: Simulate $(\tilde{X}_0^{(i)}, \tilde{Y}_0^{(i)}) \sim \tilde{\mu}_0$.
- 3: **for** k = 0, ..., K 1 **do**
- 4: Generate $(\tilde{X}_{(k+1)h}^{(i)}, \tilde{Y}_{(k+1)h}^{(i)}) \sim \mathcal{N}(m, \Sigma)$ with m, Σ as before.
- 5: end for
- 6: end for
- 7: Define $\tilde{X} = \tilde{X}^{(I)}$ where $I = \operatorname{argmin}_{i=1...,N} U(\tilde{X}^{(i)}_{Kh})$.

Numerical Results

Rastrigin Function

Consider the **Rastrigin function** $U \colon \mathbb{R}^d \to \mathbb{R}$ defined by

$$U(x) = d + ||x||^2 - \sum_{i=1}^d \cos(2\pi x_i).$$

Its minimum is located in $x^* = (0, ..., 0) \in \mathbb{R}^d$, with objective value 0. This function is highly multi-modal and satisfies a log-Sobolev inequality.

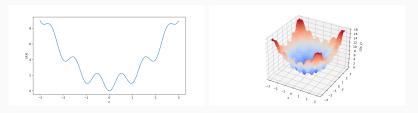
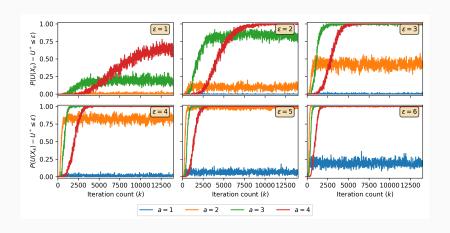


Figure 1: Rastrigin function for d = 1 and d = 2.

Selected Parameters

- **Problem Parameters:** We limit ourselves to d = 10.
- Sampling Algorithm Parameters: For a given a, we fix $\alpha=1$, $\beta=1$, b=10, $\gamma=a/10$, $\sigma_x^2=1/a$ and $\sigma_y^2=0.1$. Moreover, we set the step-size h=0.01.
- Optimization Algorithm Parameters: We set the sample count N = 10 and the iteration count K = 14000.
- **Initial Value:** We initialize our algorithm in $X_0 \sim \mathcal{N}(3 \cdot 1_d, 10 \cdot I_d)$.
- Post-Processing Parameters: We will compute empirical probabilities that $U(\tilde{X}_k) U^* \le \varepsilon$ over M = 100 runs.
- Free Parameters (to be varied): The threshold $\varepsilon > 0$ and the inverse temperature a > 0.

Empirical Probabilities



Observation: Small values of a converge faster, but to less accurate thresholds.

Comparison to Guilmeau, Chouzenoux, and Elvira, 2021

We modify some parameters for a fair comparison:

- Empirical probabilities are computed over M = 50 runs.
- Iteration count is now K = 50 or K = 500.
- Sample count is now N = 250.
- ullet Initial distribution is now deterministically $ilde{X}_0=(1,\ldots,1)^{10}.$

Denote by A_K and S_K the average and standard deviation over all runs after K iterations.

	SA	FSA	SMC	CSA	Ours
A ₅₀	3.29	3.36	3.26	3.23	14.04
S_{50}	0.425	0.453	0.521	0.484	2.563
A ₅₀₀	2.52	2.64	2.62	2.47	0.38
S ₅₀₀	0.320	0.304	0.413	0.502	0.101

Conclusion: Our algorithm is slow for K = 50, but good for K = 500.

Further Research Directions:

- Optimal parameter selection (in algorithm and the balance between N and K).
- Development of a cooling scheme (online?).

Paper: Daniel Cortild, Claire Delplancke, Nadia Oudjane, and Juan Peypouquet (Oct. 2024). Global Optimization Algorithm through High-Resolution Sampling. arXiv:2410.13737

Thank you!

References i

- Alvarez, Felipe, Hedy Attouch, Jérôme Bolte, and Patrick Redont (2002). "A second-order gradient-like dissipative dynamical system with Hessian-driven damping.: Application to optimization and mechanics". In: Journal de mathématiques pures et appliquées 81.8. Publisher: Elsevier, pp. 747–779.
- Athreya, Krishna B and Chii-Ruey Hwang (2010). "Gibbs measures asymptotics". In: Sankhya 72. Publisher: Springer, pp. 191–207.
- Attouch, Hedy, Zaki Chbani, Jalal Fadili, and Hassan Riahi (2022). "First-order optimization algorithms via inertial systems with Hessian driven damping". In: *Mathematical Programming*. Publisher: Springer, pp. 1–43.
- Guilmeau, Thomas, Emilie Chouzenoux, and Víctor Elvira (2021). "Simulated Annealing: a Review and a New Scheme". In: 2021 IEEE Statistical Signal Processing Workshop (SSP), pp. 101–105.

References ii

