Krasnoselskii-Mann Iterations Inertia, Perturbations and Approximation

Daniel Cortild · Juan Peypouquet

Faculty of Science and Engineering University of Groningen

SCO Colloquium Groningen, June 12th, 2024

Fixed Point Iterative Schemes

Problem

Given a Hilbert space \mathcal{H} and an operator $T: \mathcal{H} \to \mathcal{H}$, find $\hat{x} \in \mathcal{H}$ such that $T\hat{x} = \hat{x}$.

Picard Iterations:

$$x_{k+1} = Tx_k$$

Convergence linearly in the contractive setting, might not converge in the nonexpansive setting.

Krasnoselskii-Mann Iterations:

$$x_{k+1} = (1 - \lambda_k)x_k + \lambda_k T x_k$$

Converges in both the contractive and the nonexpansive setting.

Acceleration Methods

Introduction

Heavy-Ball Acceleration:

$$\begin{cases} y_k = x_k + \alpha_k(x_k - x_{k-1}) \\ x_{k+1} = (1 - \lambda_k)y_k + \lambda_k T x_k \end{cases}$$

Nesterov Acceleration:

$$\begin{cases} z_k = x_k + \beta_k (x_k - x_{k-1}) \\ x_{k+1} = (1 - \lambda_k) z_k + \lambda_k T z_k \end{cases}$$

General Inertial Scheme:

$$\begin{cases} y_k = x_k + \alpha_k(x_k - x_{k-1}) \\ z_k = x_k + \beta_k(x_k - x_{k-1}) \\ x_{k+1} = (1 - \lambda_k)y_k + \lambda_k T z_k \end{cases}$$

Inexactness and Diagonalization

Perturbed Krasnoselskii-Mann Iterations:

$$x_{k+1} = (1 - \lambda_k)x_k + \lambda_k Tx_k + \varepsilon_k$$

Diagonal Krasnoselskii-Mann Iterations:

$$x_{k+1} = (1 - \lambda_k)x_k + \lambda_k T_k x_k$$

General Scheme:

Introduction

$$\begin{cases} y_k &= x_k + \alpha_k(x_k - x_{k-1}) + \varepsilon_k \\ z_k &= x_k + \beta_k(x_k - x_{k-1}) + \rho_k \\ x_{k+1} &= (1 - \lambda_k)y_k + \lambda_k T_k z_k + \theta_k \end{cases}$$

Weak Convergence

Theorem (Weak Convergence)

Let $T_k \colon \mathcal{H} \to \mathcal{H}$ be a family of nonexpansive operators such that $F := \bigcap_{k \geq 1} \operatorname{Fix}(T_k) \neq \emptyset$ and such that $(I - T_k)$ is asymptotically demiclosed. Assume *mild conditions* on the parameters, and assume that the error sequences $(\varepsilon_k), (\rho_k), (\theta_k) \in \ell^1(\mathcal{H})$. Then (x_k, y_k, z_k) converges weakly to (p^*, p^*, p^*) with $p^* \in F$.

Theorem (Weak Convergence, Extended Version)

Let $T_k \colon \mathcal{H} \to \mathcal{H}$ be a family of nonexpansive operators such that $F_{\infty} := \text{Li Fix}(T_k) \neq \emptyset$ and such that (T_k) nicely approximates F_{∞} . Assume there exists a sequence (p_k) with $p_k \in \text{Fix}(T_k)$ and $(p_k - p_{k-1}) \in \ell^1(\mathcal{H})$. Assume *mild conditions* on the parameters, and assume that the error sequences $(\varepsilon_k), (\rho_k), (\theta_k) \in \ell^1(\mathcal{H})$. Then (x_k, y_k, z_k) converges weakly to (p^*, p^*, p^*) with $p^* \in F_{\infty}$.

Strong Convergence

Theorem (Strong Convergence)

Let $T_k \colon \mathcal{H} \to \mathcal{H}$ be a family of q_k -contractive operators with $q_k \leq q < 1$ and $\text{Fix}(T_k) = \{p^*\}$. Assume *mild conditions* on the parameters, and assume that the error sequences $(\varepsilon_k), (\rho_k), (\theta_k) \in \ell^2(\mathcal{H})$. Then (x_k) converges strongly to p^* .

Moreover, if $\varepsilon_k \equiv \rho_k \equiv \theta_k \equiv 0$, the convergence becomes linear.

Theorem (Strong Convergence, Extended Version)

Let $T_k \colon \mathcal{H} \to \mathcal{H}$ be a family of q_k -contractive operators with $q_k \leq q < 1$, and $\operatorname{Fix}(T_k) = \{p_k\}$ with $p_k \to p^*$ and $(p_k - p_{k-1}) \in \ell^2(\mathcal{H})$. Assume *mild conditions* on the parameters, and assume that the error sequences $(\varepsilon_k), (\rho_k), (\theta_k) \in \ell^2(\mathcal{H})$. Then (x_k, y_k, z_k) converges strongly to (p^*, p^*, p^*) .

Image Inpainting

Corrupt Image

Recovered Image

Figure: Not obtained through described algorithm!

Mathematical Formulation

$$\min_{Z \in [0,1]^{M \times N \times 3}} \left\{ \frac{1}{2} \|\mathcal{A}Z - Z_{\mathsf{corrupt}}\|^2 + \sigma \|Z_{(1)}\|_* + \sigma \|Z_{(2)}\|_* \right\}$$

Visual Results

Original Image

Heavy Ball

Corrupt Image

Nesterov

Non-Inertial

Reflected

Figure: Process obtained with $\rho = 1.8$, $\lambda = 1.3$, and $\sigma = 0.5$.

Krasnoselskii-Mann Iterations

Convergence Plots

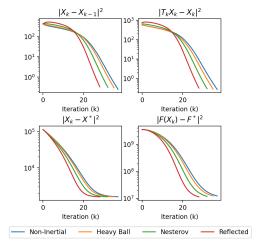


Figure: Process obtained with $\rho = 1.8$, $\lambda = 1.3$, and $\sigma = 0.5$.

9/11

Result Based on Algorithm

Figure: Obtained through Nesterov accelerated algorithm.

Thank you!

Paper: Cortild, D. & Peypouquet, J. (2024). Krasnoselskii-Mann Iterations: Inertia, Perturbations and Approximation. *arXiv preprint arXiv:2401.16870*