

Global Optimization Algorithm through High-Resolution Sampling

Daniel Cortild, N. Oudjane, C. Delplancke, J. Peypouquet22nd Conference on Advanced in Continuous Optimization (EUROPT 2025)Southampton, United Kingdom, July 1st, 2025

Problem Statement

We consider minimization problems of the following form: Given a (possibly nonconvex) smooth potential $U \colon \mathbb{R}^d \to \mathbb{R}$, find

$$x^* \in \operatorname{argmin}_{x \in \mathbb{R}^d} U(x).$$

Difficulties: Existence of local minimizers & saddle points.

Approach:

- Build a probability distribution such that its samples are close to the global minimizers.
- Build an algorithm to sample, at least approximately, from that distribution.

Main Assumptions:

- ullet U is twice differentiable and that ∇U is Lipschitz continuous,
- ullet U has a finite number of global minimizers, with minimum value U^* ,
- There exists an $a_0 > 0$ such that $\int_{\mathbb{R}^d} \exp(-a_0 U(x)) dx < +\infty$,
- ullet The measure $\mu^a \propto \exp(-aU)$ exists and satisfies a *growth condition*.

Growth Condition of Probability Measures

We will be working on the space of probability measures, which we denote \mathcal{P} .

Kullback-Leibler Divergence. For any $\mu, \nu \in \mathcal{P}$, we define

$$\mathsf{KL}(
u \| \mu) = \mathbb{E}_{\mathsf{x} \sim
u} \left[\log \frac{d \nu}{d \mu}(\mathsf{x}) \right].$$

Relative Fischer Information. For any $\mu, \nu \in \mathcal{P}$, we define

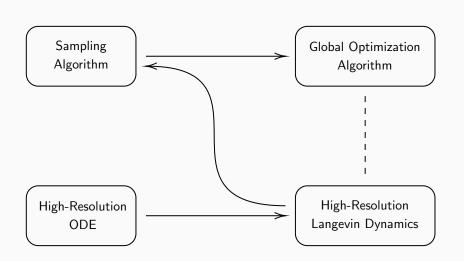
$$\operatorname{Fi}(oldsymbol{
u} \| oldsymbol{\mu}) = \mathbb{E}_{\mathbf{x} \sim oldsymbol{
u}} \left[\left\| \nabla \log rac{d oldsymbol{
u}}{d oldsymbol{\mu}}(\mathbf{x})
ight\|^2
ight].$$

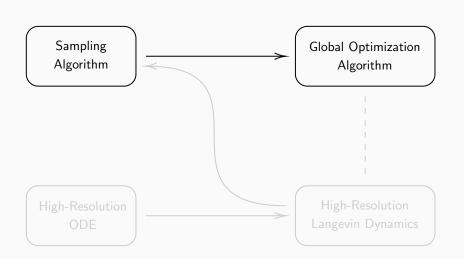
Log-Sobolev Inequality. We say μ satisfies a LSI if, for all $\nu \in \mathcal{P}$,

$$\mathsf{KL}(oldsymbol{
u} \| oldsymbol{\mu}) \leq rac{1}{2
ho} \mathsf{Fi}(oldsymbol{
u} \| oldsymbol{\mu}).$$

This may be compared to a Polyak-Lojasiewicz inequality in $\mathbb{R}^{d,1}$

¹Chewi and Stromme, *The ballistic limit of the log-Sobolev constant equals the Polyak-Łojasiewicz constant*, 2024.





Optimization through Sampling?

Define μ^* to be a mixture of Dirac measures concentrated on the global minimizers of U (see² for exact definition).

Theorem (Athreya and Hwang, 2010¹)

Let $\mu^a \propto \exp(-aU)$. Then it holds that $\mu^a \to \mu^*$ as $a \to \infty$.

Convergence in the above is in the weak sense. Strong convergence (in KL divergence) with rates was later established in Hasenplug, Rudolf and Sprungk, 2024³.

Intuitively:

$$\boxed{ \mathsf{argmin}(U) } \mathrel{\longleftarrow} \boxed{ \mu^* } \approx \boxed{ \mu^a \; (\mathsf{a} \; \mathsf{large}) } \approx \boxed{ \tilde{\mu} }$$

Question: How to choose and sample from $\tilde{\mu}$?

²Athreya and Hwang, "Gibbs measures asymptotics", 2010.

³Hasenpflug, Rudolf, and Sprungk, "Wasserstein convergence rates of increasingly concentrating probability measures", 2024.

Global Optimization Algorithm

Algorithm 1 Global Optimization Algorithm

Require: Oracle algorithm and suitable parameters.

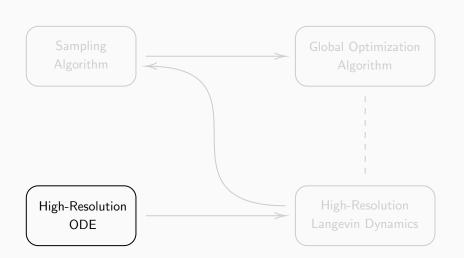
- 1: Generate N random i.i.d. samples $\tilde{X}^{(i)}$ according to oracle algorithm where $i=1,\ldots,N$.
- 2: Define $\tilde{X} = \tilde{X}^{(I)}$ where $I = \operatorname{argmin}_{i=1...,N} U(\tilde{X}^{(i)})$.

Theorem (Convergence of Global Optimization Algorithm)

Fix $\varepsilon>0$. Suppose we can sample from a distribution $\tilde{\mu}$ satisfying that $\mathrm{KL}(\tilde{\mu}\|\mu^a)$ is small.

Then we can guarantee, for \tilde{X} given by Algorithm 1, that $\mathbb{P}(U(\tilde{X})-U^*\leq \varepsilon)$ is high.

Question: How do we ensure that $KL(\tilde{\mu}||\mu^a)$ is small?



Recent Deterministic Trends

Recent trends analyse continuous dynamics to gain insights into the discretized algorithms. For instance, Gradient Descent is a discretization of the Gradient Flow:

$$\dot{x}(t) = -\gamma \nabla f(x(t)) \quad \rightarrow \quad x_{k+1} = x_k - \gamma h \nabla f(x_k).$$

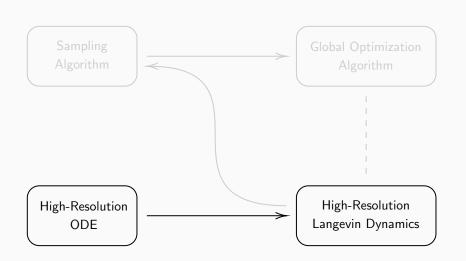
To capture acceleration behaviours, it has been proposed to study the **High-Resolution ODE**:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \beta \nabla^2 U(x(t)) \dot{x}(t) + \gamma \nabla U(x(t)) = 0,$$

where $\alpha, \beta, \gamma > 0$. Equivalently, under a change of variables,

$$\begin{cases} \dot{x}(t) &= -\beta \nabla U(x(t)) + y(t) \\ \dot{y}(t) &= -\gamma \nabla U(x(t)) - \alpha y(t). \end{cases}$$

6



High-Resolution Langevin Dynamics

One can view the Langevin Dynamics as a stochastic variant of the Gradient Flow:

$$\dot{x}(t) = -\gamma \nabla \mathit{U}(x(t)) \quad \leftrightarrow \quad dX_t = -\gamma \nabla \mathit{U}(X_t) dt + \sqrt{2\gamma/a} dB_t.$$

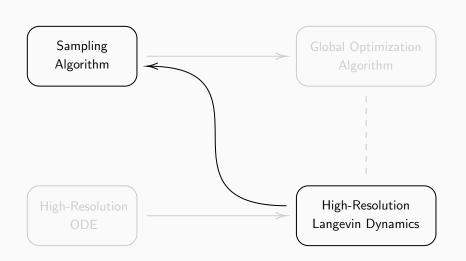
Recall the High-Resolution ODE in first-order form:

$$\begin{cases} \dot{x}(t) &= -\beta \nabla U(x(t)) + y(t) \\ \dot{y}(t) &= -\gamma \nabla U(x(t)) - \alpha y(t). \end{cases}$$

We consider a stochastic variant of it, namely

$$\begin{cases} dX_t = (-\beta \nabla U(X_t) + Y_t)dt + \sqrt{2\sigma_x^2} dB_t^x \\ dY_t = (-\gamma \nabla U(X_t) - \alpha Y_t)dt + \sqrt{2\sigma_y^2} dB_t^y. \end{cases}$$
(HRLD)

We call these dynamics the High-Resolution Langevin Dynamics.



High-Resolution Langevin Dynamics

Theorem (Convergence of High-Resolution Langevin)

Assume suitable parameter relations, and denote $\mu_t = \mathcal{L}(X_t)$ the marginal law of the HRLD. Under weak assumptions;

- 1. $\mathsf{KL}(\mu_t \| \mu^{\mathsf{a}}) o \mathsf{0}$ at an exponential rate.
- 2. For a sufficiently small step size h>0 and large number of iterations K, the law of the discretization of the HRLD, denoted by $(\tilde{X}_t,\tilde{Y}_t)$, satisfies $\mathrm{KL}(\tilde{\mu}_{Kh}||\mu^a)\leq \varepsilon$, for $\tilde{\mu}_t=\mathcal{L}(\tilde{X}_t)$. This discretized process may be simulated.

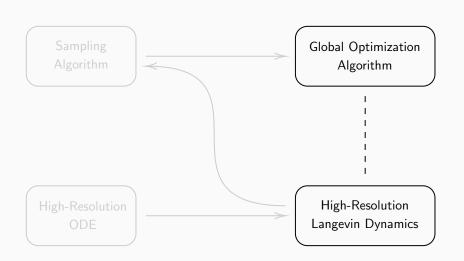
Question: How do we simulate (\tilde{X}_t) to sample from $\tilde{\mu}_t$?

High-Resolution Langevin Algorithm

- 1. Simulate $(\tilde{X}_0, \tilde{Y}_0) \sim \tilde{\mu}_0$.
- 2. Iteratively generate $(\tilde{X}_{(k+1)h}, \tilde{Y}_{(k+1)h}) \sim \mathcal{N}(m, \Sigma)$ where

$$\begin{split} m_X &= \tilde{X}_{kh} - \beta h \nabla U(\tilde{X}_{kh}) + \frac{1 - e^{-\alpha h}}{\alpha} \tilde{Y}_{kh} - \frac{\gamma}{\alpha} \left(h - \frac{1 - e^{-\alpha h}}{\alpha} \right) \nabla U(\tilde{X}_{kh}) \\ m_Y &= e^{-\alpha h} \tilde{Y}_{kh} - \frac{\gamma}{\alpha} (1 - e^{-\alpha h}) \nabla U(\tilde{X}_{kh}) \\ \Sigma_{XX} &= \frac{\sigma_y^2}{\alpha^3} \left[2\alpha h - e^{-2\alpha h} + 4e^{-\alpha h} - 3 \right] \cdot I_d + 2\sigma_x^2 h \cdot I_d \\ \Sigma_{YY} &= \frac{\sigma_y^2 (1 - e^{-2\alpha h})}{\alpha} \cdot I_d, \quad \Sigma_{XY} &= \Sigma_{YX} = \frac{\sigma_y^2 (1 - e^{-\alpha h})^2}{\alpha^2} \cdot I_d. \end{split}$$

3. Return $(\tilde{X}_{Kh}, \tilde{Y}_{Kh})$.



Global Optimization through High-Resolution Sampling

Algorithm 2 Global Optimization through High-Resolution Sampling

Require: Suitable parameters and an initial distribution $ilde{\mu}_0$.

Ensure: Produce \tilde{X} satisfying $\mathbb{P}(U(\tilde{X}) - U^* \leq \varepsilon) \geq 1 - \delta$.

- 1: **for** i = 1, ..., N **do**
- 2: Simulate $(\tilde{X}_0^{(i)}, \tilde{Y}_0^{(i)}) \sim \tilde{\boldsymbol{\mu}}_0$.
- 3: **for** k = 0, ..., K 1 **do**
- 4: Generate $(\tilde{X}_{(k+1)h}^{(i)}, \tilde{Y}_{(k+1)h}^{(i)}) \sim \mathcal{N}(m, \Sigma)$ with m, Σ as before.
- 5: end for
- 6: end for
- 7: Define $\tilde{X} = \tilde{X}^{(I)}$ where $I = \operatorname{argmin}_{i=1...,N} U(\tilde{X}^{(i)}_{Kh})$.

Numerical Results

Rastrigin Function

Consider the **Rastrigin function** $U \colon \mathbb{R}^d \to \mathbb{R}$ defined by

$$U(x) = d + ||x||^2 - \sum_{i=1}^d \cos(2\pi x_i).$$

Its minimum is located in $x^* = (0, ..., 0) \in \mathbb{R}^d$, with objective value 0. This function is highly multi-modal and satisfies our assumptions.

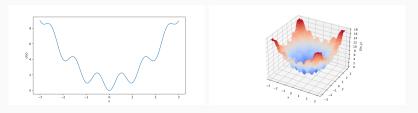
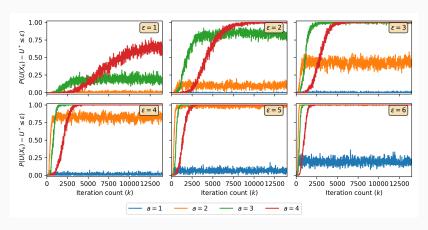


Figure 1: Rastrigin function for d = 1 and d = 2.

Empirical Probabilities

We set d = 10 and compute empirical probabilities over M = 100 runs.



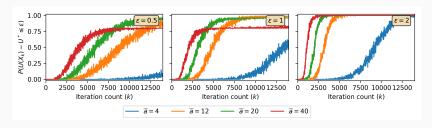
Observation: Small values of a converge faster, but to less accurate thresholds.

Simulated Annealing

We allow a to vary over the iterations, according to the rule

$$a_k = \frac{(K-k) \cdot \underline{a} - k \cdot \overline{a}}{K},$$

where K is the total number of iterations, and we wish to make a_k vary in $[\underline{a}, \overline{a}]$. We fix $\underline{a} = 0.1$.



Advantage: Much faster convergence, for much larger \bar{a} .

Disadvantage: For large \overline{a} , we get stuck in local minimizers.

Comparison to Guilmeau, Chouzenoux and Elvira (2021)⁵

For a fair comparison, we consider K = 50 and K = 500.

We denote by A_K and S_K the average and standard deviation over all runs after K iterations.

	SA	FSA	SMC	CSA	Ours ⁴
A_{50}	3.29	3.36	3.26	3.23	14.04
S_{50}	0.425	0.453	0.521	0.484	2.563
A ₅₀₀	2.52	2.64	2.62	2.47	0.38
S_{500}	0.320	0.304	0.413	0.502	0.101

Conclusion: Our algorithm is slow for K = 50, but good for K = 500.

⁴For well-chosen parameters

 $^{^5}$ Guilmeau, Chouzenoux, and Elvira, "Simulated Annealing: a Review and a New Scheme", 2021.

Conclusion

Further Research Directions:

- Optimal parameter selection (in algorithm and the balance between N and K).
- Development of a cooling scheme (online?).
- Extension to non-smooth potentials.

Paper: Daniel Cortild, Claire Delplancke, Nadia Oudjane, and Juan Peypouquet. Global Optimization Algorithm through High-Resolution Sampling. arXiv preprint arXiv:2410.13737. Oct. 2024

Thank you!