

SGD without Variance Assumption

New Tight Bounds via a Computer-Aided Lyapunov Analysis

Daniel Cortild, Lucas Ketels, J. Peypouquet, G. Garrigos Journées Franco-Chilliennes pour l'Optimization INSA Rouen, France, July 11th, 2025

Stochastic Gradient Descent

Consider the problem

$$\min \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \colon x \in \mathbb{R}^d \right\},\,$$

where all $f_i : \mathbb{R}^d \to \mathbb{R}$ are convex and *L*-smooth, and *f* has minimizers.

Stochastic Gradient Descent (SGD) iterates

$$x_0 \in \mathbb{R}^d$$
, $x_{t+1} = x_t - \gamma \nabla f_{i_k}(x_t)$ for $t = 0, 1, ...,$

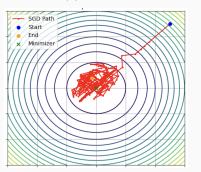
where i_k is chosen i.i.d. from the uniform distribution on $\{1, \ldots, n\}$.

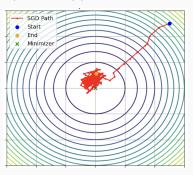
Type of Results for SGD

Convergence results for SGD are usually presented as

$$Performance(t) \leq Bias(t) + Variance(t),$$

where $Bias(t) \rightarrow 0$ as $t \rightarrow \infty$, and (ideally) Variance(t) remains bounded.





Goal: Minimize the bias term first, and the variance term second.

Variance Assumption

Typical Assumption: Uniformly bounded gradient variance;

$$\sup_{x \in \mathbb{R}^d} \mathbb{E}[\|\nabla f_{i_k}(x) - \nabla f(x)\|^2] < +\infty.$$

However, this is unrealistic in practice.¹

Alternative Assumptions: Weak growth, Strong growth, Maximal strong growth, Relaxed growth, etc.

Our setting: We define

$$\sigma_*^2 := \mathbb{E}[\|\nabla f_{i_k}(x_*)\|^2]$$
 for some $x_* \in \operatorname{argmin} f$.

Note this is automatically finite in our setting.

Bottou, Curtis, and Nocedal, "Optimization Methods for Large-Scale Machine Learning", 2018.

Our Results in the Convex Setting

We obtain a result on the Cesàro average $\overline{x}_T = \frac{x_0 + \dots + x_{T-1}}{T}$ of the form

$$\mathbb{E}[f(\overline{x}_T) - \min f] \le \mathsf{Bias}(T) \cdot ||x_0 - x_*||^2 + \mathsf{Variance}(T) \cdot \sigma_*^2,$$

where

	$\gamma L \in (0, 1)$	γ L $=$ 1	γ L \in (1, 2)
Bias(T)	$\frac{1}{2\gamma T}$	$\frac{1}{(2-\varepsilon)\gamma T}$	$\frac{1}{2\gamma(2-\gamma L)T}$
Variance(T)	$\frac{\gamma}{2(1-\gamma L)}$	$rac{\gamma(2+arepsilon)}{arepsilon(2-arepsilon)}$	$\frac{\exp(T)}{2 - \gamma L}$

Observation 1: Singularity at $\gamma L = 1$ for optimal step-size.

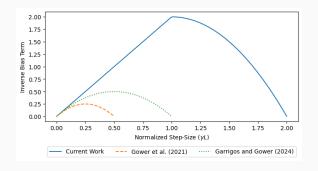
Observation 2: No uniform bound in T for $\gamma L > 1$.

Observation 3: If $\sigma_*^2 = 0$, these are not problems.

Comparison to State-of-the-Art

Comparison to

- Gower et al. (2021)²,
- Garrigos and Gower (2024)³.



²Gower, Sebbouh, and Loizou, "SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation", 2021.

³Garrigos and Gower, Handbook of Convergence Theorems for (Stochastic) Gradient Methods, 2024.

Proof Strategy 1/2

Our proofs are based on a Lyapunov analysis with an energy of the form

$$E_t := a_t \|x_t - x_*\|^2 + \rho \sum_{s=0}^{t-1} [f(x_s) - \min f] - \sum_{s=0}^{t-1} e_s \sigma_*^2,$$

where $(a_t), (e_t), \rho \geq 0$.

If we can prove a decrease in energy, namely $\mathbb{E}[E_{t+1}] \leq \mathbb{E}[E_t]$, then;

$$\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[f(x_t) - \min f] \leq \frac{a_0}{\rho T} \cdot \|x_0 - x_*\|^2 + \frac{1}{\rho T}\sum_{t=0}^{T-1} e_t \sigma_*^2.$$

We aim at solving

$$\mathsf{Bias}_{\mathsf{opt}}(T) = \mathsf{inf}\left\{ rac{\mathsf{a}_0}{\rho\,T} \colon (\mathsf{a}_t), (\mathsf{e}_t),
ho \ \mathsf{are} \ \mathsf{Lyapunov} \ \mathsf{parameters}
ight\}.$$

$$\inf_{(a_t),(e_t),\rho} \left\{ \frac{a_0}{\rho T} : \mathbb{E}[E_{t+1}] \leq \mathbb{E}[E_t], \text{ for all convex smooth functions} \right\}$$

7

Proof Strategy 2/2

$$\inf_{(a_t),(e_t),\rho} \left\{ \frac{a_0}{\rho T} : \mathbb{E}[E_{t+1}] \le \mathbb{E}[E_t], \text{ for all convex smooth functions} \right\}$$

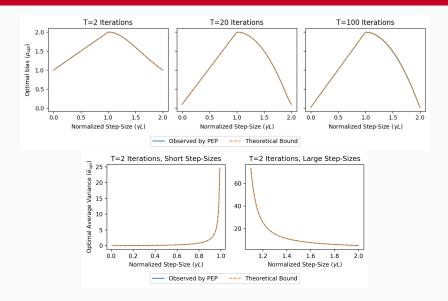
- Using standard tools from the Performance Estimation Problem methodology,⁴⁵⁶ we transform the problem into a finite-dimensional optimization problem.
- This problem may be solved numerically.
- The dual problem of the equivalent SDP provides dual variables that help us inspire the proof.

⁴Drori and Teboulle, "Performance of first-order methods for smooth convex minimization: a novel approach", 2014.

⁵Taylor, Hendrickx, and Glineur, "Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods", 2017.

 $^{^6}$ Taylor and Bach, "Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions", 2019.

Tightness of Bias and Variance Terms



Note: We only claim tightness within our framework.

Results in Strongly Convex Setting

We obtain a bound of the form

$$\mathbb{E}[\|x_T - x_*\|^2] \le \mathsf{Bias}(T) \cdot \|x_0 - x_*\|^2 + \mathsf{Variance}(T) \cdot \sigma_*^2,$$

where

$$\mathsf{Bias}(T) = \mathsf{max}\{1 - \gamma \mu, \gamma L - 1\}^{2T},$$

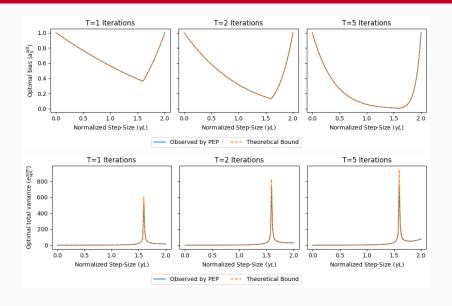
and

Variance(
$$T$$
) = $\mathcal{O}\left(\gamma^2 + \frac{\gamma^4}{\left|\gamma - \frac{2}{L+\mu}\right|}\right)$.

Observation 1: If γ approaches $\frac{2}{L+\mu}$, the variance explodes.

Observation 2: To get finite variance at $\gamma = \frac{2}{L+\mu}$, we need to degrade the rate a little bit.

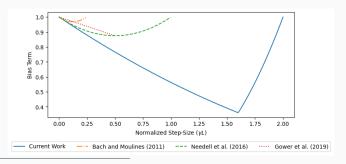
Tightness in the Strongly Convex Setting



Results in Strongly Convex Setting

- We obtain improved results for $\gamma L \in (0,2)$,
- The variance remains bounded for all step-sizes,
- There is a similar singularity at the optimal step-size $\gamma_{\text{opt}} = \frac{2}{L+\mu}$.

Comparison to state-of-the-art⁷⁸⁹:



 $^{^{7}} Bach \ and \ Moulines, \ "Non-Asymptotic \ Analysis \ of \ Stochastic \ Approximation \ Algorithms \ for \ Machine \ Learning", \ 2011.$

 $^{^{8}}$ Needell, Srebro, and Ward, "Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm", 2016.

⁹Gower, Loizou, et al., "SGD: General Analysis and Improved Rates", 2019.

Conclusion

- We provided the first study of SGD without variance assumptions for γL ∈ (0,2), for convex and strongly convex functions, and improved the current results.
- There is a previously unobserved singularity at optimal step-sizes.
- Our proofs are computer-inspired and numerically shown to be tight within our Lyapunov framework.

Based on: Daniel Cortild, Lucas Ketels, Juan Peypouquet, and Guillaume Garrigos. **New Tight Bounds for SGD without Variance Assumption: A Computer-Aided Lyapunov Analysis.** arXiv preprint arXiv:2505.17965. May 2025

Thank you!