

SGD without Variance Assumption

New Tight Bounds via a Computer-Aided Lyapunov Analysis

Daniel Cortild, Lucas Ketels, J. Peypouquet, G. Garrigos OBI 2 - Dynamics, Optimization and Control Groningen, Netherlands, June 16th, 2025

Stochastic Gradient Descent

Consider the problem

$$\min \left\{ f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \colon x \in \mathbb{R}^d \right\},\,$$

where all $f_i : \mathbb{R}^d \to \mathbb{R}$ are convex and *L*-smooth, and *f* has minimizers.

Stochastic Gradient Descent (SGD) iterates

$$x_0 \in \mathbb{R}^d$$
, $x_{t+1} = x_t - \gamma \nabla f_{i_k}(x_t)$ for $t = 0, 1, ...,$

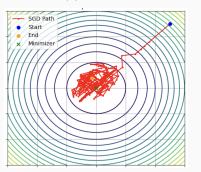
where i_k is chosen i.i.d. from the uniform distribution on $\{1, \ldots, n\}$.

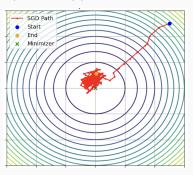
Type of Results for SGD

Convergence results for SGD are usually presented as

$$Performance(t) \leq Bias(t) + Variance(t),$$

where $Bias(t) \rightarrow 0$ as $t \rightarrow \infty$, and (ideally) Variance(t) remains bounded.





Goal: Minimize the bias term first, and the variance term second.

Variance Assumption

Typical Assumption: Uniformly bounded gradient variance;

$$\sup_{x \in \mathbb{R}^d} \mathbb{E}[\|\nabla f_{i_k}(x) - \nabla f(x)\|^2] < +\infty.$$

However, this is unrealistic in practice.¹

Alternative Assumptions: Weak growth, Strong growth, Maximal strong growth, Relaxed growth, etc.

Our setting: We define

$$\sigma_*^2 := \mathbb{E}[\|\nabla f_{i_k}(x_*)\|^2]$$
 for some $x_* \in \operatorname{argmin} f$.

Note this is automatically finite in our setting.

 $^{^{1}}$ Bottou, Curtis, and Nocedal, "Optimization Methods for Large-Scale Machine Learning", 2018.

Results in Convex Setting

We obtain a result on the Cesàro average $\overline{x}_T = \frac{x_0 + \dots + x_{T-1}}{T}$ of the form

$$\mathbb{E}[f(\overline{x}_T) - \min f] \le \mathsf{Bias}(T) \cdot ||x_0 - x_*||^2 + \mathsf{Variance}(T) \cdot \sigma_*^2,$$

where

$$\mathsf{Bias}(\mathit{T}) = \begin{cases} \frac{1}{2\gamma \mathit{T}} & \text{if } \gamma \mathit{L} \in (0,1), \\ \frac{1}{(2-\varepsilon)\gamma \mathit{T}} & \text{if } \gamma \mathit{L} = 1, \varepsilon > 0, \\ \frac{1}{2\gamma(2-\gamma \mathit{L})\mathit{T}} & \text{if } \gamma \mathit{L} \in (1,2), \end{cases}$$

and

$$\mathsf{Variance}(\mathit{T}) = \begin{cases} \frac{\gamma}{2(1-\gamma \mathit{L})} & \text{if } \gamma \mathit{L} \in (0,1), \\ \frac{\gamma(2+\varepsilon)}{\varepsilon(2-\varepsilon)} & \text{if } \gamma \mathit{L} = 1, \varepsilon > 0, \\ \frac{\exp(\mathit{T})}{2-\gamma \mathit{L}} & \text{if } \gamma \mathit{L} \in (1,2). \end{cases}$$

Observation 1: Singularity at $\gamma L = 1$ for optimal step-size.

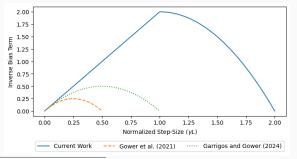
Observation 2: No uniform bound in T for $\gamma L > 1$.

Observation 3: If $\sigma_*^2 = 0$, these are not problems.

Comparison to State-of-the-Art

Comparison to

- Gower et al. (2021)²,
- Garrigos and Gower (2024)³.



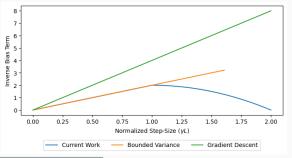
²Gower, Sebbouh, and Loizou, "SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation", 2021.

³Garrigos and Gower, *Handbook of Convergence Theorems for (Stochastic) Gradient Methods*, 2024.

Comparison to Other Methods

Comparison to

- SGD with Uniformly Bounded Variance⁴,
- Gradient Descent⁵.



 $^{^4}$ Taylor and Bach, "Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions", 2019.

⁵Taylor, Hendrickx, and Glineur, "Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods", 2017.

Proof Strategy 1/3

Our proofs are based on a Lyapunov analysis with an energy of the form

$$E_t := a_t \|x_t - x_*\|^2 + \rho \sum_{s=0}^{t-1} [f(x_s) - \min f] - \sum_{s=0}^{t-1} e_s \sigma_*^2,$$

where $(a_t), (e_t), \rho \geq 0$.

If we can prove a decrease in energy, namely $\mathbb{E}[E_{t+1}] \leq \mathbb{E}[E_t]$, then;

$$\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[f(x_t) - \min f] \leq \frac{a_0}{\rho T} \cdot \|x_0 - x_*\|^2 + \frac{1}{\rho T}\sum_{t=0}^{T-1}e_t\sigma_*^2.$$

We then aim to minimize $\operatorname{Bias}(T) = \frac{a_0}{\rho T}$.

8

Proof Strategy 2/3

Obtaining the best bias may then be formulated as

$$\mathsf{Bias}_{\mathsf{opt}}(T) = \mathsf{inf}\left\{\mathsf{Bias}(T) \colon (a_t), (e_t), \rho \text{ are Lyapunov parameters}\right\}.$$

- Using standard tools from the Performance Estimation Problem methodology,⁶⁷⁸ we transform the problem into a finite-dimensional optimization problem.
- This problem may be solved numerically.

⁶Drori and Teboulle, "Performance of first-order methods for smooth convex minimization: a novel approach", 2014.

 $^{^7}$ Taylor, Hendrickx, and Glineur, "Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods", 2017.

⁸Taylor and Bach, "Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions", 2019.

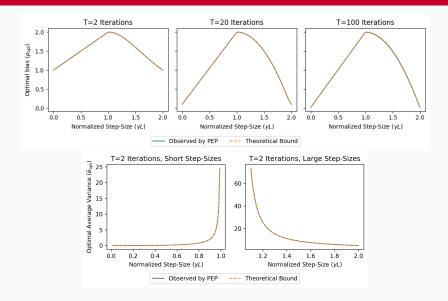
Proof Strategy 3/3

The PEP methodology provides the following:

- An estimation of the minimal bias.
- Numerical values of the coefficients (a_t) , (e_t) and ρ .
- Dual variables that help us inspire the proof.

Which helped us getting a *theoretical bias* term $Bias_{theory}(T)$.

Tightness of Bias and Variance Terms

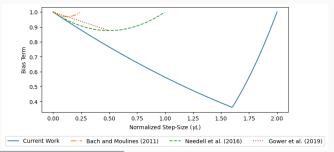


Note: We only claim tightness within our framework.

Results in Strongly Convex Setting

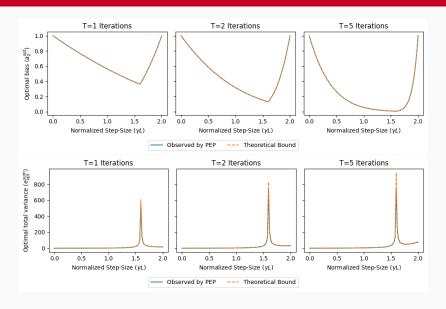
- We obtain improved results for $\gamma L \in (0,2)$,
- The variance remains bounded for all step-sizes,
- There is a similar singularity at the optimal step-size $\gamma_{\text{opt}} = \frac{2}{L+\mu}$.

Comparison to state-of-the-art⁹:



⁹Bach and Moulines, "Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning", 2011; Needell, Srebro, and Ward, "Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm", 2016; Gower, Loizou, et al., "SGD: General Analysis and Improved Rates", 2019.

Tightness in the Strongly Convex Setting



Conclusion

- We provided the first study of SGD without variance assumptions for γL ∈ (0,2), for convex and strongly convex functions, and improved the current results.
- There is a previously unobserved singularity at optimal step-sizes.
- Our proofs are computer-inspired and numerically shown to be tight within our Lyapunov framework.

Based on: Daniel Cortild, Lucas Ketels, Juan Peypouquet, and Guillaume Garrigos. **New Tight Bounds for SGD without Variance Assumption: A Computer-Aided Lyapunov Analysis.** arXiv preprint arXiv:2505.17965. May 2025

Thank you!